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Abstract. The solution of the Dirac equation for the electron in the inhomogeneous 
magnetic field H, = H sech2(ay) is discussed and it is shown that spontaneous electron- 
positron pair creation is possible, provided certain relations between the strength of the 
field, the inhomogeneity parameter and momenta are satisfied. The realisation of this 
possibility in the case of a neutron star is examined. 

1. Introduction 

It is well known that the two solutions corresponding to positive and ne ative energies 
of the Dirac equation for the free electron are separated by a gap of 2mc . One expects 
that the switching on of an interaction may alter the size of the gap, possibly leading to 
its complete closure. However, the gap persists even when the electron is subjected to 
weak electric fields and homogeneous magnetic fields. The spectrum of the Dirac- 
Coulomb equation gives an energy 

Q 

E = [I - ( ~ a ) ~ ] l ’ ~ m c ~  (1.1) 
in the 1s state. This is still a sizable fraction of mc2 if the atomic number 2 is <<a-’ 
where (Y =&, the fine structure constant. The spectrum of the Dirac electron in a 
constant (in time) homogeneous (in space) magnetic field of arbitrary strength H along 
the z direction (Rabi 1928) is given by 

E = mc2(1 + ~ N H / H , + ~ , / ~ c ~ ) ” ~  (1.2) 

N = n +$+ is ,  n = 0 , 1 , 2 ,  . . . ;  (1.3) 

where 

s = *l, corresponding to spin up and spin down for the electron, and 

m 2c3 H,=-- - 4.414 x 1013 gauss. 
eh  (1.4) 

H, is the critical magnetic field beyond which electrodynamics is expected to break 
down (Landau and Lifshitz 1961). Obviously the energy E in equation (1.2) can never 
reach zero (in fact the gap widens). 

There are situations where the closing of the gap leading to spontaneous creation of 
efe- pairs has been or could be claimed. 

f Alexander von Humboldt Fellow, University of Bonn, West Germany. 

0305-4470/79/122521+06$01.00 @ 1979 The Institute of Physics 2521 



2522 P Achuthan, T Chandramohan and K Venkatesan 

1.1.  Electron in a strong nuclear Coulomb field 

From equation (1.1) we see that for 2 = 137, E vanishes. Actually a finite extension for 
the potential source will push the value of 2 to 170 and beyond (Pomeranchuk and 
Smorodinsky 1945). Though it has been claimed that the inclusion of vacuum polarisa- 
tion will nullify the gap closure (Panchapakesan 1971) a redefinition of the vacuum 
seems to restore the effect (Brodsky and Mohr 1977). 

1.2. Electron with anomalous magnetic moment placed in a homogeneous magnetic field 

Ternov et a1 (1966) solved the Dirac equation for this case. They found for the ground 
state energy of the electron 

E = mc211 -(cu/4x)(H/Hc)I (1.5) 

which vanishes for 

H = (4xc i i / e2 )H,  = 7.6 x 1016G, (1.6) 

giving rise to the possibility of spontaneous pair creation, as has been pointed out by 
O’Connell (1968) and also by Chiu and Canuto (1968a) and Chiu et a1 (1968). While 
the maximum field strengths attainable in natural terrestrial conditions do not exceed 
106-107 gauss, it is expected that fields of order 1013G or even greater can exist in 
gravitationally collapsed bodies such as neutron stars (Chiu and Canuto 1968a, b). 
Indeed even in a non-magnetic star like the sun, a field strength of the order of 1013G 
may be achieved after local gravitational collapse. The result that fields of order 1012G 
may exist in the neighbourhood of neutron stars is based on the observed field strengths 
(=106G) found in white dwarfs (Angel and Landstreet 1971) and the magnetic flux 
conservation law which is justified by the existence of the large electrical conductivity in 
neutron stars (Cameron and Canuto 1974). But at the present time there does not seem 
to be any evidence for magnetic fields of order 1016G. 

According to Jancovici (1969a, b) the extrapolation of the energy expression (1.5) 
to higher magnetic field values, e.g. 1016G as performed by O’Connell(l968) and Chiu 
and Canuto (1968b), is not justified. When H is large, we should also take into account 
higher-order terms in H. The correct way of doing this is to find the radiative 
corrections to the energy by considering the exact electron propagator (Demeur 1953) 
in a homogeneous magnetic field. Demeur obtained an integral representation for the 
energy which for small values of H reduces to equation (1.1) and for large values of H 
approximates to the expression 

E = m ~ ~ + ( c u / 4 x ) m c ~ { [ l n ( 2 e i i H / m ~ c ~ ) - C - ~ ] ~ + A + ~ ~  .} ,  (1.7) 

where C = 0.577 (Euler’s constant) and A satisfies the bounds -6 < A  < 7. From (1.7) 
it is seen that, irrespective of the strength of the field, the radiative correction to E 
remains of the order of a and E certainly does not vanish for H = 7-6 x 1016G. 

1.3. Electron bound in a Coulomb field (hydrogen atom) in the Friedman universe 

Nowotny (1972) has discussed the energy spectrum of the hydrogen atom placed in a 
gravitational field with three types of Friedman line elements corresponding to spheri- 
cal and hyperbolic three-dimensional spaces and flat space-time. 
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Using a theorem of Weyl and Titchmarsh, Nowotny finds that whereas for the flat 
and hyperbolic spaces a discrete spectrum exists, the H atom has only a continuous 
energy spectrum in the energy range -00 < E < 00 in the static, closed three-dimen- 
sional spherical space (the Einstein universe). Thus the gap from -mc2 to +mc2 within 
which the bound states, if any, should lie has been closed due to the topology, i.e. the 
curvature of the space-time. It is interesting that for the free electron bound up in any 
one of the above-mentioned types of gravitational field the gap does not close. 

The purpose of the present paper is to show that in the case of electrons in the 
inhomogeneous magnetic field H,(y) = H sech2(ay) spontaneous pair creation is 
possible for magnetic field strengths which may be available at least in some neutron 
stars provided certain relations hold between the field strength, the inhomogeneity 
parameter and the electron momentum. 

2. Energy eigenvalues for electrons in an inhomogeneous magnetic field 

The Dirac equation for an electron in inhomogeneous magnetic fields has been solved 
exactly for four types of fields (Stanciu, 1966, 1967, Vasudevan er a1 1967). Of these, 
only two cases (solved by Stanciu) give rise to bound states. To make this paper 
self-contained we follow his notation and give some relevant expressions. 

The Dirac equation for an electron in a magnetic field lying along the z direction, 
H,(y) =H sech2(ay), arising from the vector potential A,(y) = -(H/a) tanh(ay), can 
be written in the two-component form? (Case 1954, Feynman and Gell-Mann 1958) 

z+-T---tanh(ay) -eH 
d2 e2H2 2 p x e H  

a 

where H is the magnetic field strength, a is the inhomogeneity parameter, p x  and p z  are 
the momentum components along the x and z directions respectively, +s = 
q5s(y) exp[-i(p,x +p,z ) ] ,  dS being a two-component spinor function of y alone, and 
xS = spin eigenfunctions (A), (4, s = *I. 

For each value of s, (2.1) is the Schrodinger equation for the Rosen and Morse 
potential (Resen and Morse 1932, Stanciu 1966, 1967), viz 

(-2eHpJa) tanli(ay) - {eH[(eH/a 2, - s]} sech2(ay). 

Defining the quantities 

P = - 2 ( e ~ / a ~ ) p , ,  
E = [(e2HZ/a2) + 1 +pf  + p z  -€:]/a2, 

77 = $[1+ tanh(ay)], 

U = - $ [ ( E  + p y 2 - ( E  -p)1'2], 

y = ( e ~ / a ~ ) [ ( e ~ / a ~ ) - s ] ,  

and with the transformations 

4 s  = exP(auY )[cosh(ay )]-'E (Y  1, 
where, taking positive roots throughout, 

7 = $ [ ( E  +p)'l2.t ( E  -p )1 '2 ] ,  
1 

UT = -zp, 

f We use the natural units h = c = m = 1 unless otherwise stated. 
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the equation for F, (y )  emerges as the Gaussian form of the hypergeometric equation 

The only entire rational solutions of this equation are given by (Courant and Hilbert 
1975) the Jacobi polynomials G, (p ,  q, 7) which are orthogonal in the interval ( 0 , l )  with 

Further, from equations (2.4) and (2.6) we see that 

T = ( e H - N a 2 ) / a 2 > 0  

with N defined in equation (1.3). The inequalities (2.7) and (2.8) are equivalent to the 
constraints 

n < ( Y + y / 2 - ( $ - f p ) 1 / 2  (2.10) 

n > ( y  + ( i - t ~ ) ~ ” .  (2.11) 

Condition (2.9) substituted in equation (2.6) rules out the possibility contained in 
inequality (2.1 1). 

In addition, from equation (2.4) we see that though (2.10) is necessary, it is not 
sufficient and we should have 

which, combined with the results 

(2.13) 

(2.14) 

(2.14) substituted in (2.6) yields the inequality (Stanciu 1967) 

1 1 /2 -  1 1/2-1 (2.15) n s ( v + a )  lzpl 2 .  

The relation (2.6) gives the energy eigenvalues for the electron: 

or equivalently 

= [(l + p :  + p :  + 2 N  eH -a’N’)(eH - a 2 N 2 -  (eH)2pf] / (eH- u ’ N ) ~ .  (2.17) 

The corresponding eigenvalues E:+ for the positron are obtained by replacing N by 
N’ = n - fs + f and s by -s  elsewhere in the above relations. 
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3. Spontaneous pair creation 

We express equation (2.17) in the original units for easy visualisation of the numbers 
involved in the solution to be given here: 

[E:-]’ = m2c4{[l + ( p , / m ~ ) ~  + ( p , / m ~ ) ~ +  2N(H/Hc) - a N X 3 2 2 2  

x (H/H,  - U ’ N X ~ ) ~  - (H/Hc)2(px/mc)2}[(H/Hc) - 

X = h/mc = 3.862 x lo-” cm. 

(3.1) 

(3.2) 
If the energy gap is to close we must have the expressions for both E:+ and E:- going 

to zero subject to the constraints given in the previous section and the corresponding 
ones for the positron. This means, for instance, that the numerator of the right-hand side 
of equation (3.1) vanishes provided the denominator is not zero. This can be achieved 

(i) choosing N = 1: this corresponds to n = 0 and s = 1, that is, the spin aligned 
along the magnetic field. Note that if the spin is opposite to the direction of the 
magnetic field (s = -l), then N = 0 for n = 0 and the energy reduces to 

where X is the Compton wavelength of the electron: 

by 

Ef- = mc2[1 + ( p , / m ~ ) ~ ] ” ~  (3.3) 
with no possibility of the gap closing. 

(ii) allowing p x  and eH -a2  to behave in exactly the same way, i.e. 

px/mc = k > 0, H/Hc - a  ’X2 = k > 0. 

1 + k + k2 + (p,/mc)2 + H/Hc - (H/Hc)2  = 0 

(3.4) 

With this choice, which is consistent with the constraint (2.15), equation (3.1) leads to 

(3.5) 
with the solution 

H/H, =$I1 + { 5  +4[k +k2+(p,/mc)2]}1’2]. (3.6) 
If k is large enough, with p z  = 0, we can have 

(H/Hc)  = k. (3.7) 

(H,),=o=4.414X 1016G. (3.8) 
Although, as mentioned in the Introduction, there is no evidence for such a high 
magnetic field, if we assume that the magnetic fields in a neutron star are inhomo- 
geneous, then a value for a = can bring such a value of H, in the interior of the star 
down to the surface value =1012G over a thickness of 5 km from the surface. In view of 
(3.7) the possibility of spontaneous pair creation will exist only deep in the neutron star. 
The proton fluid inside the neutron star is in a superconducting state (of type I or 11) and 
a Meissner effect could very well expel any magnetic field present in the neutron star. 
But Baym and Pcthick (1975) argue that because of the large electrical conductivity, 
the time for expulsion of magnetic fields may be greater than 10’ years, so that 
superconductivity and large magnetic fields could coexist. 

In view of the smallness of the anomalous magnetic moment of the electron we 
should expect that the incorporation of the radiative corrections should not alter the 

For instance, if k = lo3 we get 
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above results. The computation of the self energy of the electron in the inhomogeneous 
field considered, using the exact Green function, is in progress and will be reported 
elsewhere. 

Finally i t  is worth pointing out that for the only other inhomogeneous magnetic field 
H, = HeaY (Stanciu 1966,1967) for which a bound state solution is known, the gap does 
not close. 
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